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On-chip optical resonators have the promise of revolutionizing numerous fields, including metrology and sensing;
however, their optical losses have always lagged behind those of their larger discrete resonator counterparts based on
crystalline materials and silica microtoroids. Silicon nitride (Si3N4) ring resonators open up capabilities for frequency
comb generation, optical clocks, and high-precision sensing on an integrated platform. However, simultaneously
achieving a high quality factor (Q) and high confinement in Si3N4 (critical for nonlinear processes, for example)
remains a challenge. Here we show that addressing surface roughness enables overcoming the loss limitations and
achieving high-confinement on-chip ring resonators with Q of 37 million for a ring of 2.5 μm width and 67 million
for a ring of 10 μm width. We show a clear systematic path for achieving these high Qs, and these techniques can also
be used to reduce losses in other material platforms independent of geometry. Furthermore, we demonstrate optical
parametric oscillation using the 2.5 μm wide ring with sub-milliwatt pump powers and extract the loss limited by the
material absorption in our films to be 0.13� 0.05 dB∕m, which corresponds to an absorption-limited Q of at least
170 million by comparing two resonators with different degrees of confinement. Our work provides a chip-scale
platform for applications such as ultralow-power frequency comb generation, laser stabilization, and sideband-
resolved optomechanics. © 2017 Optical Society of America

OCIS codes: (190.4380) Nonlinear optics, four-wave mixing; (220.4000) Microstructure fabrication; (240.5770) Roughness.
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1. INTRODUCTION

Low-propagation-loss silicon nitride (Si3N4) ring resonators are
critical for a variety of photonic applications such as low-threshold
frequency combs [1–5], optical clocks [6], and high-precision
sensing [7–10]. High confinement is critical for tailoring the
waveguide dispersion to achieve phase matching in nonlinear
processes as well as for tighter bends in large-scale photonic sys-
tems. A microresonator’s quality factor (Q) is extremely sensitive
to losses. To date, ultrahigh Qs have been demonstrated only in
discrete resonators based on platforms such as polished calcium
fluoride (CaF2) and magnesium fluoride (MgF2) or silica micro-
resonators [11–17] with typical cross-sectional mode field diam-
eters much larger than the wavelength. Spencer et al. have recently
demonstrated ring resonators with a high Q of up to 80 million
using extremely thin (40 nm) Si3N4 films [18], which can be use-
ful for narrowband filtering or building reference cavities for laser
stabilization. However, they suffer from highly delocalized optical
modes and millimeter-scale bending radii, making it challenging

to use these thin-film ring resonators for compact photonic rout-
ing or nonlinear applications requiring dispersion engineering.
High confinement combined with low propagation loss is the key
for efficient nonlinear optical processes. The highest intrinsic Q
in high-confinement Si3N4 ring resonators reported to date is 17
million [19]. However, as Xuan et al.mention in their conclusion,
a fabrication process that can predictably achieve an intrinsic Q
larger than 10 million has not been achieved [19].

2. EFFECTS OF SURFACE ROUGHNESS ON
HIGH-CONFINEMENT WAVEGUIDES

In this work, we show that surface roughness, rather than absorp-
tion from the bulk material, plays a major role in the loss limita-
tions of Si3N4, thereby enabling a path for achieving ultra-low-loss
devices by addressing the surface quality. Absorption loss is mainly
due to O–H bonds in SiO2, and N–H and Si–H bonds in Si3N4

[20]. Scattering loss comes primarily from the interaction of light
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with the roughness of all the surfaces in a high-confinement
waveguide. Mode simulations show that light propagating in
the waveguide significantly interacts and scatters from both the
patterned sidewalls and the top and bottom surfaces [see
Fig. 1(c)]. Several groups have been working on reducing losses
by improving the properties of the bulk material to achieve high
Q [21–23]. However, to date, it has not been clear whether sur-
face interactions or material absorption is the main source of the
high loss in the integrated platform.

A. Sidewall Roughness Reduction

In order to reduce surface scattering from the sidewalls, we min-
imize the roughness introduced during the pattern transfer step of
the processing by eliminating in situ polymer formation typical in
the dry etching processes. Standard waveguide fabrication meth-
ods consist of patterning a masking layer, typically a photoresist or
an electron-beam resist, and transferring this pattern into the pho-
tonic waveguide device layer using some form of plasma etching.
Polymer formation is a common by-product of plasma etching
[24,25]. In situ polymer deposition passivates the sidewalls and
enables anisotropic etching, with vertical sidewalls desirable for
fabrication of rectangular waveguides [26,27]. It also enables pat-
tern transfer to thick waveguide device layers by enhancing the
selectivity between the mask layer and the films. The polymer
formed during this process, while critical for surface passivation
and anisotropic etching, often leaves residue on the sidewalls,
which introduces sidewall roughness. This roughness adds to
the roughness introduced by the lithography itself [28,29].
Since the roughness is generally of the order of nanometers, it
usually introduces negligible loss; however, it becomes significant
in the high-Q regimes that we are aiming for here [20,30].
Trifluoromethane (CHF3) and oxygen (O2) gases are widely used
as standard etchants in Si3N4 fabrication, and this etching chem-
istry is always accompanied by a polymer residue left on the
sidewalls [31,32]. In order to reduce this polymer residue on side-
walls, we used a higher oxygen flow to remove in situ polymer
formation, since oxygen reacts with the polymer residue to form
carbon monoxide (CO) and carbon dioxide (CO2). Oxygen also
reacts with the photoresist, which is generally used in standard
etching as the mask to transfer patterns. As a result, higher
oxygen flow decreases the etching selectivity, degrading the ability
to transfer patterns. To compensate for this effect, we use a
silicon dioxide hard mask instead of a photoresist to maintain
the ability to transfer waveguide patterns while eliminating in situ
polymer formation on the sidewalls using a higher oxygen flow.
Nitrogen is also added to increase the nitride selectivity over
oxide [33,34].

In contrast to standard silicon-based waveguides with losses of
the order of 1 dB∕cm [35–37], where sidewall roughness plays
the main role in inducing scattering loss, in ultra-low-loss Si3N4,
top surface roughness also plays a major role. Typically, roughness
on the top and/or bottom surfaces has not attracted much atten-
tion due to the facts that sidewall roughness was quite significant
and many of the previous studies relied on polished wafers or oxi-
dized wafers from silicon photonics. Here we focus on reducing
scattering loss from the top surface since the Si3N4 films are de-
posited using low-pressure chemical vapor deposition, and are not
as inherently smooth as polished single-crystal wafers or oxidized
wafers. Bottom surface roughness is not addressed here since its
roughness, governed by thermal oxidation, is lower than the one
governed by Si3N4 deposition.

B. Top Surface Roughness Reduction

In order to reduce scattering from the top surfaces, we reduce the
roughness by chemical mechanical polishing (CMP) of the Si3N4

after deposition [as shown in Fig. 2(d)]. Atomic-force microscopy
(AFM) scans before and after the polishing step are shown in
Fig. 2. The root-mean-squared (RMS) roughness has decreased
from 0.38 nm to 0.08 nm (AFM scans of different CMP Si3N4

films are shown in Supplement 1).

C. Lithography-Induced Roughness Reduction

To further decrease the loss, we apply multipass lithography to
reduce line edge roughness known to contribute to scattering loss
[38–40]. Electron-beam (e-beam) lithography, used extensively
for pattering optical waveguides, creates a line edge roughness,
which introduces extra roughness to the sidewalls. During e-beam
lithography, any instability, such as beam current fluctuations,
beam jitter, beam drift, stage position errors, and mechanical
vibrations, can generate statistical errors, which result in extra line
edge roughness in the patterns, which will add roughness to the
sidewalls. The principle of multipass lithography [39,40] consists
of exposing the same pattern multiple times at a lower current to
reduce line edge roughness by averaging statistical errors.

Fig. 1. Microscope images and mode simulation of the fabricated
devices. (a) Top view optical microscope image of a 115 μm radius ring
resonator. (b) Scanning electron microscopy image of a fabricated wave-
guide with smooth surfaces. (c) Mode simulation of a 730 nm tall and
2500 nm wide waveguide showing the mode is highly confined in the
geometry we have chosen.

Fig. 2. AFM measurement of the top surface of Si3N4. (a) 3D AFM
scan of the top surface of Si3N4 before CMP with RMS roughness of
0.38 nm and correlation length of 29 nm. (b) 2D image of the top surface
of Si3N4 before CMP and scaled to −1.4 to 1.4 nm with RMS roughness
of 0.38 nm and correlation length of 29 nm. (c) 3D image of the top
surface of Si3N4 after CMP with RMS roughness of 0.08 nm and cor-
relation length of 8.76 nm. (d) 2D image of the top surface of Si3N4 after
CMP and scaled to −1.4 to 1.4 nm with RMS roughness of 0.08 nm and
correlation length of 8.76 nm. Note the different scale bars in (a) and (c).
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3. OPTICAL MEASUREMENTS AND
COMPARISONS

We measure an intrinsic Q of 37� 6 million in high-
confinement Si3N4 ring resonators using the techniques described
above. Mode splitting, commonly observed in ultrahigh-Q sys-
tems such as whispering-gallery-mode microresonators [41–43],
is induced due to backscattering of light from fabrication imper-
fections or surface roughness. When Q is high and the mode is
highly confined, extremely small defects or roughness can induce
a visible splitting. We measured the transmission of four sets of
fabricated ring resonators: (1) using the standard process we
reported in Ref. [44] [Fig. 3(a)], (2) using our optimized etch
process but without CMP and without multipass lithography
[Fig. 3(b)], (3) using both the optimized etch recipe and
CMP but without multipass lithography [Fig. 3(c)], and (4) using
all the techniques, including the optimized etch recipe, surface
smoothing technique, and multipass lithography [Fig. 3(d)].
All the rings have a radius of 115 μm, height of 730 nm, and
width of 2500 nm, and are coupled to a waveguide of the same
dimensions. The transmission spectra and linewidth of the reso-
nator [full width at half-maximum (FWHM)] are measured using
a laser scanning technique. We launch light from a tunable laser
source, which is then transmitted through a fiber polarization
controller and coupled into our device via an inverse nanotaper
[45] using a lensed fiber. We collect the output of the ring res-
onator through another inverse nanotaper and an objective lens.
We monitor the output on a high-speed InGaAs photodetector.
The frequency of the laser is measured using a wavemeter with a
precision of 0.1 pm and the laser detuning is calibrated by mon-
itoring the fringes of a reference fiber-based Mach–Zehnder inter-
ferometer with a known free spectral range (FSR).

Figure 3 shows the measured transmission spectra of different
ring resonators. We measured the ring resonators in the under-
coupled regime so that the measuredQ is close to their intrinsicQ .

The measured intrinsic Qs, estimated by measuring the transmis-
sion [46,47] for rings fabricated using processes (1)–(4) described
above, are 5.6� 0.7 million, 16.2� 2.9 million, 28� 4.7
million, and 37� 6 million, which correspond to propagation
losses of 5.2� 0.6 dB∕m, 1.8� 0.3 dB∕m, 1.1� 0.2 dB∕m,
and 0.8� 0.1 dB∕m, respectively [48]. Note that these estimated
propagation losses are the upper bounds on the losses in straight
waveguides since in a ring the optical mode interacts more strongly
with the sidewalls due to bending.

4. SUB-MILLIWATT OPTICAL PARAMETRIC
OSCILLATION

In order to illustrate the importance of simultaneous high-Q and
high-confinement ring resonators, we demonstrate a strong de-
crease in the threshold for optical parametric oscillation down
to the sub-milliwatt level with decrease of optical losses. To de-
termine the threshold for parametric oscillation, we measured the
output power in the first generated four-wave-mixing sideband
for different pump powers. Figure 4(a) shows the data for a device

(a) (b)

(c) (d)

Fig. 3. Normalized transmission spectra of ring resonators fabricated
using different processes. (a) Device fabricated using the standard process
reported in Ref. [44] with a measured FWHM of 47 MHz. (b) Device
fabricated using the optimized etch process, but without our new surface
smoothing technique and multipass lithography with a measured FWHM
of 12.8 MHz. (c) Device fabricated using both the optimized etch recipe
and surface smoothing techniques, but without multipass lithography with
a measured FWHM of 7.6 MHz. (d) Device fabricated using all the tech-
niques including the optimized etch recipe, surface smoothing technique,
and multipass lithography with a measured FWHM of 5.6 MHz.

(a)

(b)

Fig. 4. Oscillation threshold decrease with decrease of losses.
(a) Output power in the first generated mode as a function of pump
power. In this device, parametric oscillation occurs for pump power
of 330� 70 μW (indicated by the solid green vertical line). Note that
the first band appears more than one FSR away from the pumped res-
onance. (b) Measured threshold power as a function of the loaded quality
factor (QL) for microresonators with different fabrication processes.
Threshold powers approximately follow the theoretically predicted trend
of being inversely proportional to Q2

L.
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pumped at the resonance near 1557 nm with a loaded Q of 35
million. The average threshold power is 330� 70 μW, compa-
rable to the theoretically estimated threshold power of 206 μW
using the expression [49,50]

Pth ≈ 1.54

�
π

2

�
Qc

2QL
·
n2 V
n2λQ2

L
; (1)

where λ is the pump wavelength, n is the linear refractive index,
n2 is the nonlinear refractive index (n2 � 2.4 × 10−19 m2∕W)
[51], V is the resonator mode volume, and Qc and QL are,
respectively, the coupling and loaded quality factors of the reso-
nators. This, to the best of our knowledge, is the lowest and the
first sub-milliwatt power threshold parametric oscillation reported
in planar nonlinear platforms [5,19,52–54] (Comparisons are
shown in Supplement 1). In addition, this threshold power is
close to the lowest threshold reported in ultrahigh-Q microreso-
nators such asCaF2 [55] and silica microtoroids [1]. We also mea-
sure and plot the thresholds for rings with various loaded quality
factors in Fig. 4(b). The threshold powers follow the theoretically
predicted trend of being inversely proportional to Q2

L.

5. FUNDAMENTAL LOSS LIMIT EXTRACTION

In order to extract the fundamental limit of achievable loss in sil-
icon nitride waveguides, we compare the losses of two different
structures, which have different mode interactions with the side-
walls. We estimate the bulk absorption limitation in our Si3N4

films to be 0.13� 0.05 dB∕m, which corresponds to an absorp-
tion-loss-limited Q of at least 170 million. We fabricated two
devices with waveguide widths of 2.5 μm and 10 μm on the same
wafer to ensure that the fabrication processes are identical. Both
rings have the same height of 730 nm and they are coupled to a
waveguide of the same dimensions (730 nm × 2500 nm). The
radius of the 2.5 μm ring is 115 μm and the radius of the 10 μm
ring is 369 μm [mode simulations shown in Figs. 5(a) and 5(b)].
Figures 5(c) and 5(d) show, respectively, the measured transmis-
sion spectra for the 10 μm wide ring with in TE and TM polar-
izations. The measured intrinsic Q is 67� 7 million for the TE
mode and 59� 12 million for the TM mode. At these ultrahigh
Qs, one is operating near the limits of Q, which can be reliably
estimated by scanning a laser across a resonance. Hence, we cor-
roborate theseQ measurements by performing a cavity ring-down
experiment for the TM mode [56–58,15,16]. As shown in
Fig. 5(e), the measured lifetime is 25.6� 1.3 ns, which corre-
sponds to an intrinsic Q of 63� 3 million, consistent with
our measurement of the Q , using a laser scanning technique.
We estimate the fundamental loss limit given by the bulk absorption
of Si3N4 in our films (αtotal_absorption) by comparing the losses for the
two structures extracted from the transmission measurements
(αring ∼ 0.79� 0.14 dB∕m and αwide_ring ∼ 0.43� 0.046 dB∕m)
and considering the absorption of the rings with narrower and wider
waveguides to, respectively, be

αring � αtotal_absorption � αtop_scatter � αbottom_scatter � αsidewalls_scatter;

(2)

αwide_ring � η1αtotal_absorption � η2�αtop_scatter � αbottom_scatter�
� η3αsidewalls_scatter: (3)

η1, η2, and η3 are factors that account for the interaction of the
field with the waveguide core, the top and bottom surfaces, and

the sidewalls, respectively, for the wider waveguides relative to the
narrower waveguide [59] and are calculated using Finite element
method simulations (performed with COMSOL) to be 1.010,
1.002, and 0.138, respectively. In our simulation, we have taken
different bending radii into account. αtop_scatter ∼ 0.007 dB∕m
(�0.001 dB∕m) and αbottom_scatter∼0.24 dB∕m (�0.02 dB∕m)
are, respectively, the losses due to scattering at the top and bottom
interfaces estimated from the Payne–Lacey model [60], which relates
scattering loss to the surface’s RMS (σ) roughness and correlation
length (Lc), which are both extracted from the AFM measurements
(AFM scans of the bottom SiO2 film are shown in Supplement 1).
The scattering losses due to the sidewalls, αsidewalls_scatter, and the
bulk loss are then extracted to be 0.41� 0.05 dB∕m and

(a)

(b)

(c)

(d)

(e)

Fig. 5. Mode simulation and normalized transmission spectra for ring
resonators with different interaction strengths with sidewalls. (a) TE
mode profiles of waveguides that are 2.5 μm and 10 μm wide and
730 nm high using Si3N4 with a refractive index of 1.996 as the core
material and SiO2 with a refractive index of 1.446 as the cladding
material. (The mode simulations have taken the bending radius into ac-
count). (b) Same as (a) but for TM. (c) Measured normalized TE trans-
mission spectra of the ring resonator composed of the 2.5 μm wide
waveguide (left) with a measured FWHM of 6.2 MHz and the measured
spectra of the ring resonator composed of the 10 μm wide waveguide
(right) with a measured FWHM of 3.3 MHz in TE polarization using
the optimized fabrication process. (d) TM transmission spectra of the
rings with the narrower (left) and the wider (right) waveguides with
FWHMs of 6.8 MHz and 5.8 MHz, respectively. (e) Cavity ring-down
measurement in TM mode. The measured lifetime extracted from the
exponential fit is 25.6� 1.3 ns.
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0.13� 0.05 dB∕m, respectively. Note that we are assuming here
that both sidewalls have the same loss as they experience the same
e-beam lithography and plasma etching conditions, and the loss in
the oxide cladding is negligible when compared with the loss in the
Si3N4 due to the high degree of confinement.

6. CONCLUSIONS

In conclusion, we drastically and systematically reduced losses in
high-confinement resonators by using methods for reducing
roughness from waveguide interfaces. Moreover, we demonstrate
optical parametric oscillation in an on-chip microresonator, with
sub-milliwatt pump powers. We extract the absorption-limited Q
of the ring resonator to be at least 170 million, which indicates
that we are still limited by the scattering loss, thereby providing a
path for achieving ultra-low-loss resonators simply via addressing
the scattering loss. From our AFM measurements, one possible
path for further decreasing these scattering losses is by addressing
the roughness at the bottom cladding–core interface generated
by the thermal oxidation process. Our work provides an on-chip
platform for devices with performance that could be comparable
to the performance achieved in discrete large devices.
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