Publications

2016
Dutt, Avik, Steven Miller, Kevin Luke, Jaime Cardenas, Alexander L. Gaeta, Paulo Nussenzveig, and Michal Lipson. “Tunable Squeezing Using Coupled Ring Resonators on a Silicon Nitride Chip.” Opt. Lett. 41 (2016): 223. Publisher's Version Abstract
We demonstrate continuous tuning of the squeezing-level generated in a double-ring optical parametric oscillator by externally controlling the coupling condition using electrically controlled integrated microheaters. We accomplish this by utilizing the avoided crossing exhibited by a pair of coupled silicon nitride microring resonators. We directly detect a change in the squeezing level from 0.5 dB in the undercoupled regime to 2 dB in the overcoupled regime, which corresponds to a change in the generated on-chip squeezing factor from 0.9 to 3.9 dB. Such wide tunability in the squeezing level can be harnessed for on-chip quantum-enhanced sensing protocols that require an optimal degree of squeezing.
dutt_tunable_squeezing_ol_2015.pdf
2014
Miller, Steven, Kevin Luke, Yoshitomo Okawachi, Jaime Cardenas, Alexander L. Gaeta, and Michal Lipson. “On-chip frequency comb generation at visible wavelengths via simultaneous second- and third-order optical nonlinearities.” Optics Express 22 (2014): 26517-26525. Publisher's Version Abstract
Microresonator-based frequency comb generation at or near visible wavelengths would enable applications in precise optical clocks, frequency metrology, and biomedical imaging. Comb generation in the visible has been limited by strong material dispersion and loss at short wavelengths, and only very narrowband comb generation has reached below 800 nm. We use the second-order optical nonlinearity in an integrated high-Q silicon nitride ring resonator cavity to convert a near-infrared frequency comb into the visible range. We simultaneously demonstrate parametric frequency comb generation in the near-infrared, second-harmonic generation, and sum-frequency generation. We measure 17 comb lines converted to visible wavelengths extending to 765 nm. (C) 2014 Optical Society of America
miller_simultaneous_2nd_3rd_nonlin_2014.pdf