Publications

2017
Yu, Mengjie, Jae K Jang, Yoshitomo Okawachi, Austin G Griffith, Kevin Luke, Steven A Miller, Xingchen Ji, Michal Lipson, and Alexander L Gaeta. “Breather soliton dynamics in microresonators.” Nature Communications 8 (2017): 14569. Publisher's Version Abstract
The generation of temporal cavity solitons in microresonators results in coherent low-noise optical frequency combs that are critical for applications in spectroscopy, astronomy, navigation or telecommunications. Breather solitons also form an important part of many different classes of nonlinear wave systems, manifesting themselves as a localized temporal structure that exhibits oscillatory behaviour. To date, the dynamics of breather solitons in microresonators remains largely unexplored, and its experimental characterization is challenging. Here we demonstrate the excitation of breather solitons in two different microresonator platforms based on silicon nitride and on silicon. We investigate the dependence of the breathing frequency on pump detuning and observe the transition from period-1 to period-2 oscillation. Our study constitutes a significant contribution to understanding the soliton dynamics within the larger context of nonlinear science.
yu_ncomms_breather_soliton.pdf
2016
Yoshitomo, Okawachi, Mengjie Yu, Kevin Luke, Daniel O. Carvalho, Michal Lipson, and Alexander L. Gaeta. “Quantum random number generator using a microresonator-based Kerr oscillator.” Opt. Lett. 41 (2016): 4194–4197. Publisher's Version Abstract
We demonstrate an all-optical quantum random number generator using a dual-pumped degenerate optical parametric oscillator in a silicon nitride microresonator. The frequency-degenerate bi-phase state output is realized using parametric four-wave mixing in the normal group-velocity dispersion regime with two nondegenerate pumps. We achieve a random number generation rate of 2 MHz and verify the randomness of our output using the National Institute of Standards and Technology Statistical Test Suite. The scheme offers potential for a chip-scale random number generator with gigahertz generation rates and no postprocessing.
ol-41-18-4194.pdf
Klenner, Alexander, Aline S. Mayer, Adrea R. Johnson, Kevin Luke, Michael R. E. Lamont, Yoshitomo Okawachi, Michal Lipson, Alexander L. Gaeta, and Ursula Keller. “Gigahertz frequency comb offset stabilization based on supercontinuum generation in silicon nitride waveguides.” Opt. Express 24 (2016): 11043–11053. Publisher's Version Abstract
Silicon nitride (Si3N4) waveguides represent a novel photonic platform that is ideally suited for energy efficient and ultrabroadband nonlinear interactions from the visible to the mid-infrared. Chip-based supercontinuum generation in Si3N4 offers a path towards a fully-integrated and highly compact comb source for sensing and time-and-frequency metrology applications. We demonstrate the first successful frequency comb offset stabilization that utilizes a Si3N4 waveguide for octave-spanning supercontinuum generation and achieve the lowest integrated residual phase noise of any diode-pumped gigahertz laser comb to date. In addition, we perform a direct comparison to a standard silica photonic crystal fiber (PCF) using the same ultrafast solid-state laser oscillator operating at 1 &\#x00B5;m. We identify the minimal role of Raman scattering in Si3N4 as a key benefit that allows to overcome the fundamental limitations of silica fibers set by Raman-induced self-frequency shift.
gigahertz_frequency_comb_offset_stabilization_based_on_supercontinuum_generation_in_silicon_nitride_waveguides.pdf
Joshi, Chaitanya, Jae K. Jang, Kevin Luke, Xingchen Ji, Steven A. Miller, Alexander Klenner, Yoshitomo Okawachi, Michal Lipson, and Alexander L. Gaeta. “Thermally controlled comb generation and soliton modelocking in microresonators.” Opt. Lett. 41 (2016): 2565–2568. Publisher's Version Abstract
We report, to the best of our knowledge, the first demonstration of thermally controlled soliton mode-locked frequency comb generation in microresonators. By controlling the electric current through heaters integrated with silicon nitride microresonators, we demonstrate a systematic and repeatable pathway to single- and multi-soliton mode-locked states without adjusting the pump laser wavelength. Such an approach could greatly simplify the generation of mode-locked frequency combs and facilitate applications such as chip-based dual-comb spectroscopy.
thermally_controlled_comb_generation_and_soliton_modelocking_in_microresonators.pdf
Jang, Jae K., Yoshitomo Okawachi, Mengjie Yu, Kevin Luke, Xingchen Ji, Michal Lipson, and Alexander L. Gaeta. “Dynamics of mode-coupling-induced microresonator frequency combs in normal dispersion.” Optics Express 24, no. 25 (2016): 28794 - 28803. Publisher's Version Abstract
We experimentally and theoretically investigate the dynamics of microresonator-based frequency comb generation assisted by mode coupling in the normal group-velocity dispersion (GVD) regime. We show that mode coupling can initiate intracavity modulation instability (MI) by directly perturbing the pump-resonance mode. We also observe the formation of a low-noise comb as the pump frequency is tuned further into resonance from the MI point. We determine the phase-matching conditions that accurately predict all the essential features of the MI and comb spectra, and extend the existing analogy between mode coupling and high-order dispersion to the normal GVD regime. We discuss the applicability of our analysis to the possibility of broadband comb generation in the normal GVD regime.
Dutt, Avik, Chaitanya Joshi, Xingchen Ji, Jaime Cardenas, Yoshitomo Okawachi, Kevin Luke, Alexander L. Gaeta, and Michal Lipson. “On-chip dual comb source for spectroscopy.” arXiv:1611.07673 [physics] (2016). Publisher's Version Abstract
Dual-comb spectroscopy is a powerful technique for real-time, broadband optical sampling of molecular spectra which requires no moving components. Recent developments with microresonator-based platforms have enabled frequency combs at the chip scale. However, the need to precisely match the resonance wavelengths of distinct high-quality-factor microcavities has hindered the development of an on-chip dual comb source. Here, we report the first simultaneous generation of two microresonator combs on the same chip from a single laser. The combs span a broad bandwidth of 51 THz around a wavelength of 1.56 \$\textbackslashmu\$m. We demonstrate low-noise operation of both frequency combs by deterministically tuning into soliton mode-locked states using integrated microheaters, resulting in narrow (\$\textless\$ 10 kHz) microwave beatnotes. We further use one mode-locked comb as a reference to probe the formation dynamics of the other comb, thus introducing a technique to investigate comb evolution without auxiliary lasers or microwave oscillators. We demonstrate broadband high-SNR absorption spectroscopy of dichloromethane spanning 170 nm using the dual comb source over a 20 \$\textbackslashmu\$s acquisition time. Our device paves the way for compact and robust dual-comb spectrometers at nanosecond timescales.
dutt_2016_on-chip_dual_comb.pdf
Dutt, Avik, Steven Miller, Kevin Luke, Jaime Cardenas, Alexander L. Gaeta, Paulo Nussenzveig, and Michal Lipson. “Tunable Squeezing Using Coupled Ring Resonators on a Silicon Nitride Chip.” Opt. Lett. 41 (2016): 223. Publisher's Version Abstract
We demonstrate continuous tuning of the squeezing-level generated in a double-ring optical parametric oscillator by externally controlling the coupling condition using electrically controlled integrated microheaters. We accomplish this by utilizing the avoided crossing exhibited by a pair of coupled silicon nitride microring resonators. We directly detect a change in the squeezing level from 0.5 dB in the undercoupled regime to 2 dB in the overcoupled regime, which corresponds to a change in the generated on-chip squeezing factor from 0.9 to 3.9 dB. Such wide tunability in the squeezing level can be harnessed for on-chip quantum-enhanced sensing protocols that require an optimal degree of squeezing.
dutt_tunable_squeezing_ol_2015.pdf
2015
Okawachi, Yoshitomo, Mengjie Yu, Kevin Luke, Daniel O. Carvalho, Sven Ramelow, Alessandro Farsi, Michal Lipson, and Alexander L. Gaeta. “Dual-pumped degenerate Kerr oscillator in a silicon nitride microresonator.” Opt. Lett. 40 (2015): 5267–5270. Publisher's Version Abstract
We demonstrate a degenerate parametric oscillator in a silicon nitride microresonator. We use two frequency-detuned pump waves to perform parametric four-wave mixing and operate in the normal group-velocity dispersion regime to produce signal and idler fields that are frequency degenerate. Our theoretical modeling shows that this regime enables generation of bimodal phase states, analogous to the chi(2)-based degenerate OPO. Our system offers potential for realization of CMOS-chip-based coherent optical computing and an all-optical quantum random number generator.
okawachi_dual_pumped_kerr.pdf
Johnson, Adrea R., Aline S. Mayer, Alexander Klenner, Kevin Luke, Erin S. Lamb, Michael R. E. Lamont, Chaitanya Joshi, et al.. “Octave-spanning coherent supercontinuum generation in a silicon nitride waveguide.” Opt. Lett. 40 (2015): 5117–5120. Publisher's Version Abstract
We demonstrate the generation of a supercontinuum spanning more than 1.4 octaves in a silicon nitride waveguide using sub-100-fs pulses at 1µm generated by either a 53-MHz, diode-pumped ytterbium (Yb) fiber laser or a 1-GHz, Yb:CaAlGdO4 (Yb:CALGO) laser. Our numerical simulations show that the broadband supercontinuum is fully coherent, and a spectral interference measurement is used to verify that the supercontinuum generated with the Yb:CALGO laser possesses a high degree of coherence over the majority of its spectral bandwidth. This coherent spectrum may be utilized for optical coherence tomography, spectroscopy, and frequency metrology.
johnson_supercontinuum_ol_2014.pdf
Dutt, Avik, Kevin Luke, Sasikanth Manipatruni, Alexander L. Gaeta, Paulo Nussenzveig, and Michal Lipson. “On-Chip Optical Squeezing.” Physical Review Applied 3 (2015): 044005. Publisher's Version Abstract
We report the observation of all-optical squeezing in an on-chip monolithically integrated CMOScompatible platform. Our device consists of a low-loss silicon nitride microring optical parametric oscillator (OPO) with a gigahertz cavity linewidth. We measure 1.7 dB (5 dB corrected for losses) of subshot-noise quantum correlations between bright twin beams generated in the microring four-wave-mixing OPO pumped above threshold. This experiment demonstrates a compact, robust, and scalable platform for quantum-optics and quantum-information experiments on chip.
dutt_squeezing_prapplied_2015.pdf
Tunable frequency combs based on dual microring resonators
Miller, Steven A., Yoshitomo Okawachi, Sven Ramelow, Kevin Luke, Avik Dutt, Alessandro Farsi, Alexander L. Gaeta, and Michal Lipson. “Tunable frequency combs based on dual microring resonators.” Optics Express 23 (2015): 21527-21540. Publisher's Version Abstract
In order to achieve efficient parametric frequency comb generation in microresonators, external control of coupling between the cavity and the bus waveguide is necessary. However, for passive monolithically integrated structures, the coupling gap is fixed and cannot be externally controlled, making tuning the coupling inherently challenging. We design a dual-cavity coupled microresonator structure in which tuning one ring resonance frequency induces a change in the overall cavity coupling condition. We demonstrate wide extinction tunability with high efficiency by engineering the ring coupling conditions. Additionally, we note a distinct dispersion tunability resulting from coupling two cavities of slightly different path lengths, and present a new method of modal dispersion engineering. Our fabricated devices consist of two coupled high quality factor silicon nitride microresonators, where the extinction ratio of the resonances can be controlled using integrated microheaters. Using this extinction tunability, we optimize comb generation efficiency as well as provide tunability for avoiding higher-order mode-crossings, known for degrading comb generation. The device is able to provide a 110-fold improvement in the comb generation efficiency. Finally, we demonstrate open eye diagrams using low-noise phase-locked comb lines as a wavelength-division multiplexing channel. (C) 2015 Optical Society of America
miller_tunable_combs_oe_2015.pdf
2014
Okawachi, Yoshitomo, Michael R. E. Lamont, Kevin Luke, Daniel O. Carvalho, Mengjie Yu, Michal Lipson, and Alexander L. Gaeta. “Bandwidth shaping of microresonator-based frequency combs via dispersion engineering.” Optics Letters 39 (2014): 3535-3538. Publisher's Version Abstract
We investigate experimentally and theoretically the role of group-velocity dispersion and higher-order dispersion on the bandwidth of microresonator-based parametric frequency combs. We show that the comb bandwidth and the power contained in the comb can be tailored for a particular application. Additionally, our results demonstrate that fourth-order dispersion plays a critical role in determining the spectral bandwidth for comb bandwidths on the order of an octave. (C) 2014 Optical Society of America
okawachi_bw_shaping_combs_ol_2014.pdf
Cardenas, Jaime, Carl B. Poitras, Kevin Luke, Lian-Wee Luo, Paul Adrian Morton, and Michal Lipson. “High Coupling Efficiency Etched Facet Tapers in Silicon Waveguides.” IEEE Photonics Technology Letters 26 (2014): 2380-2382. Publisher's Version Abstract
We demonstrate a platform based on etched facet silicon inverse tapers for waveguide-lensed fiber coupling with a loss as low as 0.7 dB/facet. This platform can be fabricated on a wafer scale enabling mass-production of silicon photonic devices with broadband, high-efficiency couplers.
cardenas_etched_facet_2014.pdf
Miller, Steven, Kevin Luke, Yoshitomo Okawachi, Jaime Cardenas, Alexander L. Gaeta, and Michal Lipson. “On-chip frequency comb generation at visible wavelengths via simultaneous second- and third-order optical nonlinearities.” Optics Express 22 (2014): 26517-26525. Publisher's Version Abstract
Microresonator-based frequency comb generation at or near visible wavelengths would enable applications in precise optical clocks, frequency metrology, and biomedical imaging. Comb generation in the visible has been limited by strong material dispersion and loss at short wavelengths, and only very narrowband comb generation has reached below 800 nm. We use the second-order optical nonlinearity in an integrated high-Q silicon nitride ring resonator cavity to convert a near-infrared frequency comb into the visible range. We simultaneously demonstrate parametric frequency comb generation in the near-infrared, second-harmonic generation, and sum-frequency generation. We measure 17 comb lines converted to visible wavelengths extending to 765 nm. (C) 2014 Optical Society of America
miller_simultaneous_2nd_3rd_nonlin_2014.pdf
2013
Luke, Kevin, Avik Dutt, Carl B. Poitras, and Michal Lipson. “Overcoming Si3N4 film stress limitations for high quality factor ring resonators.” Optics Express 21 (2013): 22829-22833. Abstract
Silicon nitride (Si3N4) ring resonators are critical for a variety of photonic devices. However the intrinsically high film stress of silicon nitride has limited both the optical confinement and quality factor (Q) of ring resonators. We show that stress in Si3N4 films can be overcome by introducing mechanical trenches for isolating photonic devices from propagating cracks. We demonstrate a Si3N4 ring resonator with an intrinsic quality factor of 7 million, corresponding to a propagation loss of 4.2 dB/m. This is the highest quality factor reported to date for high confinement Si3N4 ring resonators in the 1550 nm wavelength range. (c) 2013 Optical Society of America
2012
Saha, Kasturi, Yoshitomo Okawachi, Jacob S. Levy, Ryan K. W. Lau, Kevin Luke, Mark A. Foster, Michal Lipson, and Alexander L. Gaeta. “Broadband parametric frequency comb generation with a 1-mu m pump source.” Optics Express 20 (2012): 26935-26941. Abstract
We report the first experimental demonstration of broadband frequency comb generation from a single-frequency pump laser at 1-mu m using parametric oscillation in a high-Q silicon-nitride ring resonator. The resonator dispersion is engineered to have a broad anomalous group velocity dispersion region near the pump wavelength for efficient parametric four-wave mixing. The comb spans 55 THz with a 230-GHz free spectral range. These results demonstrate the powerful advantage of dispersion engineering in chip-based devices for producing combs with a wide range of pump wavelengths. (C) 2012 Optical Society of America