Publications

2017
Yu, Mengjie, Jae K Jang, Yoshitomo Okawachi, Austin G Griffith, Kevin Luke, Steven A Miller, Xingchen Ji, Michal Lipson, and Alexander L Gaeta. “Breather soliton dynamics in microresonators.” Nature Communications 8 (2017): 14569. Publisher's Version Abstract
The generation of temporal cavity solitons in microresonators results in coherent low-noise optical frequency combs that are critical for applications in spectroscopy, astronomy, navigation or telecommunications. Breather solitons also form an important part of many different classes of nonlinear wave systems, manifesting themselves as a localized temporal structure that exhibits oscillatory behaviour. To date, the dynamics of breather solitons in microresonators remains largely unexplored, and its experimental characterization is challenging. Here we demonstrate the excitation of breather solitons in two different microresonator platforms based on silicon nitride and on silicon. We investigate the dependence of the breathing frequency on pump detuning and observe the transition from period-1 to period-2 oscillation. Our study constitutes a significant contribution to understanding the soliton dynamics within the larger context of nonlinear science.
yu_ncomms_breather_soliton.pdf
Miller, Steven A, Mengjie Yu, Xingchen Ji, Austin G Griffith, Jaime Cardenas, Alexander L Gaeta, and Michal Lipson. “Low-Loss Silicon Platform for Broadband Mid-Infrared Photonics.” arXiv:1703.03517 (2017). Publisher's Version Abstract
Broadband mid-infrared (mid-IR) spectroscopy applications could greatly benefit from today's well-developed, highly scalable silicon photonics technology; however, this platform lacks broadband transparency due to its reliance on absorptive silicon dioxide cladding. Alternative cladding materials have been studied, but the challenge lies in decreasing losses while avoiding complex fabrication techniques. Here, in contrast to traditional assumptions, we show that silicon photonics can achieve low-loss propagation in the mid-IR from 3 - 6 um wavelength, thus providing a highly scalable, well-developed technology in this spectral range. We engineer the waveguide cross section and optical mode interaction with the absorptive cladding oxide to reduce loss at mid-IR wavelengths. We fabricate a microring resonator and measure an intrinsic quality (Q) factor of 10^6 at wavelengths from 3.5 to 3.8 um. This is the highest Q demonstrated on an integrated mid-IR platform to date. With this high-Q silicon microresonator, we also demonstrate a low optical parametric oscillation threshold of 5.2 mW, illustrating the utility of this platform for nonlinear chip-scale applications in the mid-IR.
2016
Yoshitomo, Okawachi, Mengjie Yu, Kevin Luke, Daniel O. Carvalho, Michal Lipson, and Alexander L. Gaeta. “Quantum random number generator using a microresonator-based Kerr oscillator.” Opt. Lett. 41 (2016): 4194–4197. Publisher's Version Abstract
We demonstrate an all-optical quantum random number generator using a dual-pumped degenerate optical parametric oscillator in a silicon nitride microresonator. The frequency-degenerate bi-phase state output is realized using parametric four-wave mixing in the normal group-velocity dispersion regime with two nondegenerate pumps. We achieve a random number generation rate of 2 MHz and verify the randomness of our output using the National Institute of Standards and Technology Statistical Test Suite. The scheme offers potential for a chip-scale random number generator with gigahertz generation rates and no postprocessing.
ol-41-18-4194.pdf
Griffith, Austin G., Mengjie Yu, Yoshitomo Okawachi, Jaime Cardenas, Aseema Mohanty, Alexander L. Gaeta, and Michal Lipson. “Coherent mid-infrared frequency combs in silicon-microresonators in the presence of Raman effects.” Opt. Express 24 (2016): 13044–13050. Publisher's Version Abstract
We demonstrate the first low-noise mid-IR frequency comb source using a silicon microresonator. Our observation of strong Raman scattering lines in the generated comb suggests that interplay between Raman and four-wave mixing plays a role in the generated low-noise state. In addition, we characterize, the intracavity comb generation dynamics using an integrated PIN diode, which takes advantage of the inherent three-photon absorption process in silicon.
coherent_mid-infrared_frequency_combs_in_silicon-microresonators_in_the_presence_of_raman_effects.pdf
Jang, Jae K., Yoshitomo Okawachi, Mengjie Yu, Kevin Luke, Xingchen Ji, Michal Lipson, and Alexander L. Gaeta. “Dynamics of mode-coupling-induced microresonator frequency combs in normal dispersion.” Optics Express 24, no. 25 (2016): 28794 - 28803. Publisher's Version Abstract
We experimentally and theoretically investigate the dynamics of microresonator-based frequency comb generation assisted by mode coupling in the normal group-velocity dispersion (GVD) regime. We show that mode coupling can initiate intracavity modulation instability (MI) by directly perturbing the pump-resonance mode. We also observe the formation of a low-noise comb as the pump frequency is tuned further into resonance from the MI point. We determine the phase-matching conditions that accurately predict all the essential features of the MI and comb spectra, and extend the existing analogy between mode coupling and high-order dispersion to the normal GVD regime. We discuss the applicability of our analysis to the possibility of broadband comb generation in the normal GVD regime.
Yu, Mengjie, Yoshitomo Okawachi, Austin G. Griffith, Michal Lipson, and Alexander L. Gaeta. “Mode-locked mid-infrared frequency combs in a silicon microresonator.” Optica 3, no. 8 (2016): 854 - 860. Publisher's Version Abstract
Mid-infrared (mid-IR) frequency combs have broad applications in molecular spectroscopy and chemical/biological sensing. Recently developed microresonator-based combs in this wavelength regime could enable portable and robust devices using a single-frequency pump field. Here, we demonstrate a mode-locked microresonator-based frequency comb in the mid-IR spanning 2.4–4.3 μm. We observe high pump-to-comb conversion efficiency, in which 40% of the pump power is converted to the output comb power. Utilizing an integrated PIN structure allows for tuning the silicon microresonator and controlling cavity soliton formation via free-carrier detection and control. Our results significantly advance microresonator-based comb technology toward a portable and robust mid-IR spectroscopic device that operates at low pump powers.
Yu, Mengjie, Yoshitomo Okawachi, Austin G Griffith, Nathalie Picqué, Michal Lipson, and Alexander L Gaeta. “Silicon-chip-based mid-infrared dual-comb spectroscopy.” arXiv:1610.01121 (2016). Publisher's Version Abstract
On-chip spectroscopy that could realize real-time fingerprinting with label-free and high-throughput detection of trace molecules is one of the 'holy grails" of sensing. Such miniaturized spectrometers would greatly enable applications in chemistry, bio-medicine, material science or space instrumentation, such as hyperspectral microscopy of live cells or pharmaceutical quality control. Dual-comb spectroscopy (DCS), a recent technique of Fourier transform spectroscopy without moving parts, is particularly promising since it measures high-precision spectra in the gas phase using only a single detector. Here, we present a microresonator-based platform designed for mid-infrared (mid-IR) DCS. A single continuous-wave (CW) low-power pump source generates two mutually coherent mode-locked frequency combs spanning from 2.6 μm to 4.1 μm in two silicon micro-resonators. Thermal control and free-carrier injection control modelocking of each comb and tune the dual-comb parameters. The large line spacing of the combs (127 GHz) and its precise tuning over tens of MHz, unique features of chip-scale comb generators, are exploited for a proof-of-principle experiment of vibrational absorption DCS in the liquid phase, with spectra of acetone spanning from 2870 nm to 3170 nm at 127-GHz (4.2-cm−1) resolution. We take a significant step towards a broadband, mid-IR spectroscopy instrument on a chip. With further system development, our concept holds promise for real-time and time-resolved spectral acquisition on the nanosecond time scale.
yu_midir_dual_comb_arxiv.pdf
2015
Okawachi, Yoshitomo, Mengjie Yu, Kevin Luke, Daniel O. Carvalho, Sven Ramelow, Alessandro Farsi, Michal Lipson, and Alexander L. Gaeta. “Dual-pumped degenerate Kerr oscillator in a silicon nitride microresonator.” Opt. Lett. 40 (2015): 5267–5270. Publisher's Version Abstract
We demonstrate a degenerate parametric oscillator in a silicon nitride microresonator. We use two frequency-detuned pump waves to perform parametric four-wave mixing and operate in the normal group-velocity dispersion regime to produce signal and idler fields that are frequency degenerate. Our theoretical modeling shows that this regime enables generation of bimodal phase states, analogous to the chi(2)-based degenerate OPO. Our system offers potential for realization of CMOS-chip-based coherent optical computing and an all-optical quantum random number generator.
okawachi_dual_pumped_kerr.pdf
Griffith, Austin G., Ryan K. W. Lau, Jaime Cardenas, Yoshitomo Okawachi, Aseema Mohanty, Romy Fain, Yoon Ho Daniel Lee, et al.. “Silicon-chip mid-infrared frequency comb generation.” Nature Communications 6 (2015). Abstract
Optical frequency combs are a revolutionary light source for high-precision spectroscopy because of their narrow linewidths and precise frequency spacing. Generation of such combs in the mid-infrared spectral region (2-20 mm) is important for molecular gas detection owing to the presence of a large number of absorption lines in this wavelength regime. Microresonator-based frequency comb sources can provide a compact and robust platform for comb generation that can operate with relatively low optical powers. However, material and dispersion engineering limitations have prevented the realization of an on-chip integrated mid-infrared microresonator comb source. Here we demonstrate a complementary metal-oxide-semiconductor compatible platform for on-chip comb generation using silicon microresonators, and realize a broadband frequency comb spanning from 2.1 to 3.5 mm. This platform is compact and robust and offers the potential to be versatile for use outside the laboratory environment for applications such as real-time monitoring of atmospheric gas conditions.
Cardenas, Jaime, Mengjie Yu, Yoshitomo Okawachi, Carl B. Poitras, Ryan K. W. Lau, Avik Dutt, Alexander L. Gaeta, and Michal Lipson. “Optical nonlinearities in high-confinement silicon carbide waveguides.” Optics Letters 40 (2015): 4138-4141. Publisher's Version Abstract
We demonstrate strong nonlinearities of n(2) = 8.6 +/- 1.1 x 10(-15) cm(2) W-1 in single-crystal silicon carbide (SiC) at a wavelength of 2360 nm. We use a high-confinement SiC waveguide fabricated based on a high-temperature smart-cut process. (C) 2015 Optical Society of America
cardenas_sic_nonlinearities_ol_2015.pdf
2014
Okawachi, Yoshitomo, Michael R. E. Lamont, Kevin Luke, Daniel O. Carvalho, Mengjie Yu, Michal Lipson, and Alexander L. Gaeta. “Bandwidth shaping of microresonator-based frequency combs via dispersion engineering.” Optics Letters 39 (2014): 3535-3538. Publisher's Version Abstract
We investigate experimentally and theoretically the role of group-velocity dispersion and higher-order dispersion on the bandwidth of microresonator-based parametric frequency combs. We show that the comb bandwidth and the power contained in the comb can be tailored for a particular application. Additionally, our results demonstrate that fourth-order dispersion plays a critical role in determining the spectral bandwidth for comb bandwidths on the order of an octave. (C) 2014 Optical Society of America
okawachi_bw_shaping_combs_ol_2014.pdf