Griffith, Austin G., Ryan K. W. Lau, Jaime Cardenas, Yoshitomo Okawachi, Aseema Mohanty, Romy Fain, Yoon Ho Daniel Lee, et al.. “Silicon-chip mid-infrared frequency comb generation.” Nature Communications 6 (2015). Abstract
Optical frequency combs are a revolutionary light source for high-precision spectroscopy because of their narrow linewidths and precise frequency spacing. Generation of such combs in the mid-infrared spectral region (2-20 mm) is important for molecular gas detection owing to the presence of a large number of absorption lines in this wavelength regime. Microresonator-based frequency comb sources can provide a compact and robust platform for comb generation that can operate with relatively low optical powers. However, material and dispersion engineering limitations have prevented the realization of an on-chip integrated mid-infrared microresonator comb source. Here we demonstrate a complementary metal-oxide-semiconductor compatible platform for on-chip comb generation using silicon microresonators, and realize a broadband frequency comb spanning from 2.1 to 3.5 mm. This platform is compact and robust and offers the potential to be versatile for use outside the laboratory environment for applications such as real-time monitoring of atmospheric gas conditions.