Publications

2016
Joshi, Chaitanya, Jae K. Jang, Kevin Luke, Xingchen Ji, Steven A. Miller, Alexander Klenner, Yoshitomo Okawachi, Michal Lipson, and Alexander L. Gaeta. “Thermally controlled comb generation and soliton modelocking in microresonators.” Opt. Lett. 41 (2016): 2565–2568. Publisher's Version Abstract
We report, to the best of our knowledge, the first demonstration of thermally controlled soliton mode-locked frequency comb generation in microresonators. By controlling the electric current through heaters integrated with silicon nitride microresonators, we demonstrate a systematic and repeatable pathway to single- and multi-soliton mode-locked states without adjusting the pump laser wavelength. Such an approach could greatly simplify the generation of mode-locked frequency combs and facilitate applications such as chip-based dual-comb spectroscopy.
thermally_controlled_comb_generation_and_soliton_modelocking_in_microresonators.pdf
Dutt, Avik, Chaitanya Joshi, Xingchen Ji, Jaime Cardenas, Yoshitomo Okawachi, Kevin Luke, Alexander L. Gaeta, and Michal Lipson. “On-chip dual comb source for spectroscopy.” arXiv:1611.07673 [physics] (2016). Publisher's Version Abstract
Dual-comb spectroscopy is a powerful technique for real-time, broadband optical sampling of molecular spectra which requires no moving components. Recent developments with microresonator-based platforms have enabled frequency combs at the chip scale. However, the need to precisely match the resonance wavelengths of distinct high-quality-factor microcavities has hindered the development of an on-chip dual comb source. Here, we report the first simultaneous generation of two microresonator combs on the same chip from a single laser. The combs span a broad bandwidth of 51 THz around a wavelength of 1.56 \$\textbackslashmu\$m. We demonstrate low-noise operation of both frequency combs by deterministically tuning into soliton mode-locked states using integrated microheaters, resulting in narrow (\$\textless\$ 10 kHz) microwave beatnotes. We further use one mode-locked comb as a reference to probe the formation dynamics of the other comb, thus introducing a technique to investigate comb evolution without auxiliary lasers or microwave oscillators. We demonstrate broadband high-SNR absorption spectroscopy of dichloromethane spanning 170 nm using the dual comb source over a 20 \$\textbackslashmu\$s acquisition time. Our device paves the way for compact and robust dual-comb spectrometers at nanosecond timescales.
dutt_2016_on-chip_dual_comb.pdf
2015
Johnson, Adrea R., Aline S. Mayer, Alexander Klenner, Kevin Luke, Erin S. Lamb, Michael R. E. Lamont, Chaitanya Joshi, et al.. “Octave-spanning coherent supercontinuum generation in a silicon nitride waveguide.” Opt. Lett. 40 (2015): 5117–5120. Publisher's Version Abstract
We demonstrate the generation of a supercontinuum spanning more than 1.4 octaves in a silicon nitride waveguide using sub-100-fs pulses at 1µm generated by either a 53-MHz, diode-pumped ytterbium (Yb) fiber laser or a 1-GHz, Yb:CaAlGdO4 (Yb:CALGO) laser. Our numerical simulations show that the broadband supercontinuum is fully coherent, and a spectral interference measurement is used to verify that the supercontinuum generated with the Yb:CALGO laser possesses a high degree of coherence over the majority of its spectral bandwidth. This coherent spectrum may be utilized for optical coherence tomography, spectroscopy, and frequency metrology.
johnson_supercontinuum_ol_2014.pdf