Publications

2016
Klenner, Alexander, Aline S. Mayer, Adrea R. Johnson, Kevin Luke, Michael R. E. Lamont, Yoshitomo Okawachi, Michal Lipson, Alexander L. Gaeta, and Ursula Keller. “Gigahertz frequency comb offset stabilization based on supercontinuum generation in silicon nitride waveguides.” Opt. Express 24 (2016): 11043–11053. Publisher's Version Abstract
Silicon nitride (Si3N4) waveguides represent a novel photonic platform that is ideally suited for energy efficient and ultrabroadband nonlinear interactions from the visible to the mid-infrared. Chip-based supercontinuum generation in Si3N4 offers a path towards a fully-integrated and highly compact comb source for sensing and time-and-frequency metrology applications. We demonstrate the first successful frequency comb offset stabilization that utilizes a Si3N4 waveguide for octave-spanning supercontinuum generation and achieve the lowest integrated residual phase noise of any diode-pumped gigahertz laser comb to date. In addition, we perform a direct comparison to a standard silica photonic crystal fiber (PCF) using the same ultrafast solid-state laser oscillator operating at 1 &\#x00B5;m. We identify the minimal role of Raman scattering in Si3N4 as a key benefit that allows to overcome the fundamental limitations of silica fibers set by Raman-induced self-frequency shift.
gigahertz_frequency_comb_offset_stabilization_based_on_supercontinuum_generation_in_silicon_nitride_waveguides.pdf
2015
Johnson, Adrea R., Aline S. Mayer, Alexander Klenner, Kevin Luke, Erin S. Lamb, Michael R. E. Lamont, Chaitanya Joshi, et al.. “Octave-spanning coherent supercontinuum generation in a silicon nitride waveguide.” Opt. Lett. 40 (2015): 5117–5120. Publisher's Version Abstract
We demonstrate the generation of a supercontinuum spanning more than 1.4 octaves in a silicon nitride waveguide using sub-100-fs pulses at 1µm generated by either a 53-MHz, diode-pumped ytterbium (Yb) fiber laser or a 1-GHz, Yb:CaAlGdO4 (Yb:CALGO) laser. Our numerical simulations show that the broadband supercontinuum is fully coherent, and a spectral interference measurement is used to verify that the supercontinuum generated with the Yb:CALGO laser possesses a high degree of coherence over the majority of its spectral bandwidth. This coherent spectrum may be utilized for optical coherence tomography, spectroscopy, and frequency metrology.
johnson_supercontinuum_ol_2014.pdf