Publications

2017
Wang, Cheng, Mian Zhang, Brian Stern, Michal Lipson, and Marko Loncar. “Nanophotonic Lithium Niobate Electro-optic Modulators.” arXiv 1701.06470 (2017). Publisher's Version Abstract
Modern communication networks require high performance and scalable electro-optic modulators that convert electrical signals to optical signals at high speed. Existing lithium niobate modulators have excellent performance but are bulky and prohibitively expensive to scale up. Here we demonstrate scalable and high-performance nanophotonic electro-optic modulators made of single-crystalline lithium niobate microring resonators and micro-Mach-Zehnder interferometers. We show a half-wave electro-optic modulation efficiency of 1.8V-cm and data rates up to 40 Gbps.
Quantum Interference between Transverse Spatial Waveguide Modes
Mohanty, Aseema, Mian Zhang, Avik Dutt, Sven Ramelow, Paulo Nussenzveig, and Michal Lipson. “Quantum Interference between Transverse Spatial Waveguide Modes.” Nature Communications 8 (2017): 14010. Publisher's Version Abstract
Integrated quantum optics has the potential to markedly reduce the footprint and resource requirements of quantum information processing systems, but its practical implementation demands broader utilization of the available degrees of freedom within the optical field. To date, integrated photonic quantum systems have primarily relied on path encoding. However, in the classical regime, the transverse spatial modes of a multi-mode waveguide have been easily manipulated using the waveguide geometry to densely encode information. Here, we demonstrate quantum interference between the transverse spatial modes within a single multi-mode waveguide using quantum circuit-building blocks. This work shows that spatial modes can be controlled to an unprecedented level and have the potential to enable practical and robust quantum information processing.
quantum_interference_between_transverse_spatial_waveguide_modes.pdf
2015
Zhang, Mian, Shreyas Shah, Jaime Cardenas, and Michal Lipson. “Synchronization and Phase Noise Reduction in Micromechanical Oscillator Arrays Coupled through Light.” Physical Review Letters, 2015. Abstract
Synchronization of many coupled oscillators is widely found in nature and has the potential to revolutionize timing technologies. Here, we demonstrate synchronization in arrays of silicon nitride micromechanical oscillators coupled in an all-to-all configuration purely through an optical radiation field. We show that the phase noise of the synchronized oscillators can be improved by almost 10 dB below the phase noise limit for each individual oscillator. These results open a practical route towards synchronized oscillator networks.
Shah, Shreyas Y., Mian Zhang, Richard Rand, and Michal Lipson. “Master-Slave Locking of Optomechanical Oscillators over a Long Distance.” Physical Review Letters 114 (2015): 113602. Publisher's Version Abstract
Frequency locking and other phenomena emerging from nonlinear interactions between mechanical oscillators are of scientific and technological importance. However, existing schemes to observe such behavior are not scalable over distance. We demonstrate a scheme to couple two independent mechanical oscillators, separated in frequency by 80 kHz and situated far from each other (3.2 km), via light. Using light as the coupling medium enables this scheme to have low loss and be extended over long distances. This scheme is reversible and can be generalized for arbitrary network configurations.
shah_master_slave_locking_prl_2015.pdf
2014
Zhang, Mian, Gustavo Luiz, Shreyas Shah, Gustavo Wiederhecker, and Michal Lipson. “Eliminating anchor loss in optomechanical resonators using elastic wave interference.” Applied Physics Letters 105 (2014): 051904. Publisher's Version Abstract
Optomechanical resonators suffer from the dissipation of mechanical energy through the necessary anchors enabling the suspension of the structure. Here, we show that such structural loss in an optomechanical oscillator can be almost completely eliminated through the destructive interference of elastic waves using dual-disk structures. We also present both analytical and numerical models that predict the observed interference of elastic waves. Our experimental data reveal unstressed silicon nitride (Si3N4) devices with mechanical Q-factors up to 10(4) at mechanical frequencies of f = 102 MHz (fQ = 10(12)) at room temperature. (C) 2014 AIP Publishing LLC.
zhang_anchor_loss_interference_apl_2014.pdf
2013
Cardenas, Jaime, Mian Zhang, Christopher T. Phare, Shreyas Y. Shah, Carl B. Poitras, Biswajeet Guha, and Michal Lipson. “High Q SiC microresonators.” Optics Express 21 (2013): 16882-16887. Abstract
We demonstrate photonic devices based on standard 3C SiC epitaxially grown on silicon. We achieve high optical confinement by taking advantage of the high stiffness of SiC and undercutting the underlying silicon substrate. We demonstrate a 20 mu m radius suspended microring resonator with Q=14,100 fabricated on commercially available SiC-on-silicon substrates. (C) 2013 Optical Society of America
2012
Zhang, Mian, Gustavo S. Wiederhecker, Sasikanth Manipatruni, Arthur Barnard, Paul McEuen, and Michal Lipson. “Synchronization of Micromechanical Oscillators Using Light.” Physical Review Letters 109 (2012). Abstract
Synchronization, the emergence of spontaneous order in coupled systems, is of fundamental importance in both physical and biological systems. We demonstrate the synchronization of two dissimilar silicon nitride micromechanical oscillators, that are spaced apart by a few hundred nanometers and are coupled through an optical cavity radiation field. The tunability of the optical coupling between the oscillators enables one to externally control the dynamics and switch between coupled and individual oscillation states. These results pave a path toward reconfigurable synchronized oscillator networks.
2011
Preston, Kyle, Yoon Ho Daniel Lee, Mian Zhang, and Michal Lipson. “Waveguide-integrated telecom-wavelength photodiode in deposited silicon.” Optics Letters 36, no. 1 (2011): 52-54. Abstract
We demonstrate photodiodes in deposited polycrystalline silicon at 1550 nm wavelength with 0.15 A/W responsivity, 40 nA dark current, and gigahertz time response. Subband absorption is mediated by defects that are naturally present in the polycrystalline material structure. The material exhibits a moderate absorption coefficient of 6 dB/cm, which allows the same microring resonator device to act as both a demultiplexing filter and a photodetector. We discuss the use of deposited silicon-based complementary metal-oxide semiconductor materials for nanophotonic interconnects. (C) 2010 Optical Society of America
waveguide-integrated_telecom-wavelength_photodiode_in_deposited_silicon.pdf
Zhang, Mian, Gustavo Wiederhecker, Sasikanth Manipatruni, Arthur Barnard, Paul McEuen, and Michal Lipson. “Synchronization of Micromechanical Oscillators Using Light.” arXiv:1112.3636v1 (2011). Abstract
Synchronization, the emergence of spontaneous order in coupled systems, is of fundamental importance in both physical and biological systems. We demonstrate the synchronization of two dissimilar silicon nitride micromechanical oscillators, that are spaced apart by a few hundred nanometers and are coupled through optical radiation field. The tunability of the optical coupling between the oscillators enables one to externally control the dynamics and switch between coupled and individual oscillation states. These results pave a path towards reconfigurable massive synchronized oscillator networks.
synchronization_of_micromechanical_oscillators_using_light.pdf