Publications

2016
Joshi, Chaitanya, Jae K. Jang, Kevin Luke, Xingchen Ji, Steven A. Miller, Alexander Klenner, Yoshitomo Okawachi, Michal Lipson, and Alexander L. Gaeta. “Thermally controlled comb generation and soliton modelocking in microresonators.” Opt. Lett. 41 (2016): 2565–2568. Publisher's Version Abstract
We report, to the best of our knowledge, the first demonstration of thermally controlled soliton mode-locked frequency comb generation in microresonators. By controlling the electric current through heaters integrated with silicon nitride microresonators, we demonstrate a systematic and repeatable pathway to single- and multi-soliton mode-locked states without adjusting the pump laser wavelength. Such an approach could greatly simplify the generation of mode-locked frequency combs and facilitate applications such as chip-based dual-comb spectroscopy.
thermally_controlled_comb_generation_and_soliton_modelocking_in_microresonators.pdf
2015
Tunable frequency combs based on dual microring resonators
Miller, Steven A., Yoshitomo Okawachi, Sven Ramelow, Kevin Luke, Avik Dutt, Alessandro Farsi, Alexander L. Gaeta, and Michal Lipson. “Tunable frequency combs based on dual microring resonators.” Optics Express 23 (2015): 21527-21540. Publisher's Version Abstract
In order to achieve efficient parametric frequency comb generation in microresonators, external control of coupling between the cavity and the bus waveguide is necessary. However, for passive monolithically integrated structures, the coupling gap is fixed and cannot be externally controlled, making tuning the coupling inherently challenging. We design a dual-cavity coupled microresonator structure in which tuning one ring resonance frequency induces a change in the overall cavity coupling condition. We demonstrate wide extinction tunability with high efficiency by engineering the ring coupling conditions. Additionally, we note a distinct dispersion tunability resulting from coupling two cavities of slightly different path lengths, and present a new method of modal dispersion engineering. Our fabricated devices consist of two coupled high quality factor silicon nitride microresonators, where the extinction ratio of the resonances can be controlled using integrated microheaters. Using this extinction tunability, we optimize comb generation efficiency as well as provide tunability for avoiding higher-order mode-crossings, known for degrading comb generation. The device is able to provide a 110-fold improvement in the comb generation efficiency. Finally, we demonstrate open eye diagrams using low-noise phase-locked comb lines as a wavelength-division multiplexing channel. (C) 2015 Optical Society of America
miller_tunable_combs_oe_2015.pdf