Publications

2017
St-Gelais, R, GR Bhatt, L Zhu, S Fan, and M Lipson. “Hot Carrier-Based Near-Field Thermophotovoltaic Energy Conversion..” ACS nano (2017). Abstract
Near-field thermophotovoltaics (NFTPV) is a promising approach for direct conversion of heat to electrical power. This technology relies on the drastic enhancement of radiative heat transfer (compared to conventional blackbody radiation) that occurs when objects at different temperatures are brought to deep subwavelength distances (typically <100 nm) from each other. Achieving such radiative heat transfer between a hot object and a photovoltaic (PV) cell could allow direct conversion of heat to electricity with a greater efficiency than using current solid-state technologies (e.g., thermoelectric generators). One of the main challenges in the development of this technology, however, is its incompatibility with conventional silicon PV cells. Thermal radiation is weak at frequencies larger than the ∼1.1 eV bandgap of silicon, such that PV cells with lower excitation energies (typically 0.4–0.6 eV) are required for NFTPV. Using low bandgap III–V semiconductors to circumvent this limitation, as proposed in most theoretical works, is challenging and therefore has never been achieved experimentally. In this work, we show that hot carrier PV cells based on Schottky junctions between silicon and metallic films could provide an attractive solution for achieving high efficiency NFTPV electricity generation. Hot carrier science is currently an important field of research and several approaches are investigated for increasing the quantum efficiency (QE) of hot carrier generation beyond conventional Fowler model predictions. If the Fowler limit can indeed be overcome, we show that hot carrier-based NFTPV systems—after optimization of their thermal radiation spectrum—could allow electricity generation with up to 10–30% conversion efficiencies and 10–500 W/cm2generated power densities (at 900–1500 K temperatures). We also discuss how the unique properties of thermal radiation in the extreme near-field are especially well suited for investigating recently proposed approaches for high QE hot carrier junctions. We therefore expect our work to be of interest for the field of hot carrier science and—by relying solely on conventional thin film materials—to provide a path for the experimental demonstration of NFTPV energy conversion.
hot_carrier-based_near-field_thermophotovoltaic_energy_conversion.pdf
Wang, Cheng, Mian Zhang, Brian Stern, Michal Lipson, and Marko Loncar. “Nanophotonic Lithium Niobate Electro-optic Modulators.” arXiv 1701.06470 (2017). Publisher's Version Abstract
Modern communication networks require high performance and scalable electro-optic modulators that convert electrical signals to optical signals at high speed. Existing lithium niobate modulators have excellent performance but are bulky and prohibitively expensive to scale up. Here we demonstrate scalable and high-performance nanophotonic electro-optic modulators made of single-crystalline lithium niobate microring resonators and micro-Mach-Zehnder interferometers. We show a half-wave electro-optic modulation efficiency of 1.8V-cm and data rates up to 40 Gbps.
Quantum Interference between Transverse Spatial Waveguide Modes
Mohanty, Aseema, Mian Zhang, Avik Dutt, Sven Ramelow, Paulo Nussenzveig, and Michal Lipson. “Quantum Interference between Transverse Spatial Waveguide Modes.” Nature Communications 8 (2017): 14010. Publisher's Version Abstract
Integrated quantum optics has the potential to markedly reduce the footprint and resource requirements of quantum information processing systems, but its practical implementation demands broader utilization of the available degrees of freedom within the optical field. To date, integrated photonic quantum systems have primarily relied on path encoding. However, in the classical regime, the transverse spatial modes of a multi-mode waveguide have been easily manipulated using the waveguide geometry to densely encode information. Here, we demonstrate quantum interference between the transverse spatial modes within a single multi-mode waveguide using quantum circuit-building blocks. This work shows that spatial modes can be controlled to an unprecedented level and have the potential to enable practical and robust quantum information processing.
quantum_interference_between_transverse_spatial_waveguide_modes.pdf
2016
Yoshitomo, Okawachi, Mengjie Yu, Kevin Luke, Daniel O. Carvalho, Michal Lipson, and Alexander L. Gaeta. “Quantum random number generator using a microresonator-based Kerr oscillator.” Opt. Lett. 41 (2016): 4194–4197. Publisher's Version Abstract
We demonstrate an all-optical quantum random number generator using a dual-pumped degenerate optical parametric oscillator in a silicon nitride microresonator. The frequency-degenerate bi-phase state output is realized using parametric four-wave mixing in the normal group-velocity dispersion regime with two nondegenerate pumps. We achieve a random number generation rate of 2 MHz and verify the randomness of our output using the National Institute of Standards and Technology Statistical Test Suite. The scheme offers potential for a chip-scale random number generator with gigahertz generation rates and no postprocessing.
ol-41-18-4194.pdf
Klenner, Alexander, Aline S. Mayer, Adrea R. Johnson, Kevin Luke, Michael R. E. Lamont, Yoshitomo Okawachi, Michal Lipson, Alexander L. Gaeta, and Ursula Keller. “Gigahertz frequency comb offset stabilization based on supercontinuum generation in silicon nitride waveguides.” Opt. Express 24 (2016): 11043–11053. Publisher's Version Abstract
Silicon nitride (Si3N4) waveguides represent a novel photonic platform that is ideally suited for energy efficient and ultrabroadband nonlinear interactions from the visible to the mid-infrared. Chip-based supercontinuum generation in Si3N4 offers a path towards a fully-integrated and highly compact comb source for sensing and time-and-frequency metrology applications. We demonstrate the first successful frequency comb offset stabilization that utilizes a Si3N4 waveguide for octave-spanning supercontinuum generation and achieve the lowest integrated residual phase noise of any diode-pumped gigahertz laser comb to date. In addition, we perform a direct comparison to a standard silica photonic crystal fiber (PCF) using the same ultrafast solid-state laser oscillator operating at 1 &\#x00B5;m. We identify the minimal role of Raman scattering in Si3N4 as a key benefit that allows to overcome the fundamental limitations of silica fibers set by Raman-induced self-frequency shift.
gigahertz_frequency_comb_offset_stabilization_based_on_supercontinuum_generation_in_silicon_nitride_waveguides.pdf
Griffith, Austin G., Mengjie Yu, Yoshitomo Okawachi, Jaime Cardenas, Aseema Mohanty, Alexander L. Gaeta, and Michal Lipson. “Coherent mid-infrared frequency combs in silicon-microresonators in the presence of Raman effects.” Opt. Express 24 (2016): 13044–13050. Publisher's Version Abstract
We demonstrate the first low-noise mid-IR frequency comb source using a silicon microresonator. Our observation of strong Raman scattering lines in the generated comb suggests that interplay between Raman and four-wave mixing plays a role in the generated low-noise state. In addition, we characterize, the intracavity comb generation dynamics using an integrated PIN diode, which takes advantage of the inherent three-photon absorption process in silicon.
coherent_mid-infrared_frequency_combs_in_silicon-microresonators_in_the_presence_of_raman_effects.pdf
Joshi, Chaitanya, Jae K. Jang, Kevin Luke, Xingchen Ji, Steven A. Miller, Alexander Klenner, Yoshitomo Okawachi, Michal Lipson, and Alexander L. Gaeta. “Thermally controlled comb generation and soliton modelocking in microresonators.” Opt. Lett. 41 (2016): 2565–2568. Publisher's Version Abstract
We report, to the best of our knowledge, the first demonstration of thermally controlled soliton mode-locked frequency comb generation in microresonators. By controlling the electric current through heaters integrated with silicon nitride microresonators, we demonstrate a systematic and repeatable pathway to single- and multi-soliton mode-locked states without adjusting the pump laser wavelength. Such an approach could greatly simplify the generation of mode-locked frequency combs and facilitate applications such as chip-based dual-comb spectroscopy.
thermally_controlled_comb_generation_and_soliton_modelocking_in_microresonators.pdf
St-Gelais, Raphael, Linxiao Zhu, Shanhui Fan, and Michal Lipson. “Near-field radiative heat transfer between parallel structures in the deep subwavelength regime.” Nat Nano advance online publication (2016): - . Publisher's Version Abstract
Thermal radiation between parallel objects separated by deep subwavelength distances and subject to large thermal gradients (>100 K) can reach very high magnitudes, while being concentrated on a narrow frequency distribution. These unique characteristics could enable breakthrough technologies for thermal transport control and electricity generation (for example, by radiating heat exactly at the bandgap frequency of a photovoltaic cell). However, thermal transport in this regime has never been achieved experimentally due to the difficulty of maintaining large thermal gradients over nanometre-scale distances while avoiding other heat transfer mechanisms, namely conduction. Here, we show near-field radiative heat transfer between parallel SiC nanobeams in the deep subwavelength regime. The distance between the beams is controlled by a high-precision micro-electromechanical system (MEMS). We exploit the mechanical stability of nanobeams under high tensile stress to minimize thermal buckling effects, therefore keeping control of the nanometre-scale separation even at large thermal gradients. We achieve an enhancement of heat transfer of almost two orders of magnitude with respect to the far-field limit (corresponding to a 42 nm separation) and show that we can maintain a temperature gradient of 260 K between the cold and hot surfaces at ∼100 nm distance.
st-gelais_raphael_near-field_radiative_heat_transfer_2016.pdf
Dutt, Avik, Chaitanya Joshi, Xingchen Ji, Jaime Cardenas, Yoshitomo Okawachi, Kevin Luke, Alexander L. Gaeta, and Michal Lipson. “On-chip dual comb source for spectroscopy.” arXiv:1611.07673 [physics] (2016). Publisher's Version Abstract
Dual-comb spectroscopy is a powerful technique for real-time, broadband optical sampling of molecular spectra which requires no moving components. Recent developments with microresonator-based platforms have enabled frequency combs at the chip scale. However, the need to precisely match the resonance wavelengths of distinct high-quality-factor microcavities has hindered the development of an on-chip dual comb source. Here, we report the first simultaneous generation of two microresonator combs on the same chip from a single laser. The combs span a broad bandwidth of 51 THz around a wavelength of 1.56 \$\textbackslashmu\$m. We demonstrate low-noise operation of both frequency combs by deterministically tuning into soliton mode-locked states using integrated microheaters, resulting in narrow (\$\textless\$ 10 kHz) microwave beatnotes. We further use one mode-locked comb as a reference to probe the formation dynamics of the other comb, thus introducing a technique to investigate comb evolution without auxiliary lasers or microwave oscillators. We demonstrate broadband high-SNR absorption spectroscopy of dichloromethane spanning 170 nm using the dual comb source over a 20 \$\textbackslashmu\$s acquisition time. Our device paves the way for compact and robust dual-comb spectrometers at nanosecond timescales.
dutt_2016_on-chip_dual_comb.pdf
Ji, Xingchen, Felippe AS Barbosa, Samantha P Roberts, Avik Dutt, Jaime Cardenas, Yoshitomo Okawachi, Alex Bryant, Alexander L Gaeta, and Michal Lipson. “Breaking the Loss Limitation of On-chip High-confinement Resonators.” arXiv:1609.08699 (2016). Publisher's Version Abstract
On-chip optical resonators have the promise of revolutionizing numerous fields including metrology and sensing; however, their optical losses have always lagged behind their larger discrete resonator counterparts based on crystalline materials and flowable glass. Silicon nitride (Si3N4) ring resonators open up capabilities for optical routing, frequency comb generation, optical clocks and high precision sensing on an integrated platform. However, simultaneously achieving high quality factor and high confinement in Si3N4 (critical for nonlinear processes for example) remains a challenge. Here, we show that addressing surface roughness enables us to overcome the loss limitations and achieve high-confinement, on-chip ring resonators with a quality factor (Q) of 37 million for a ring with 2.5 {\mu}m width and 67 million for a ring with 10 {\mu}m width. We show a clear systematic path for achieving these high quality factors. Furthermore, we extract the loss limited by the material absorption in our films to be 0.13 dB/m, which corresponds to an absorption limited Q of at least 170 million by comparing two resonators with different degrees of confinement. Our work provides a chip-scale platform for applications such as ultra-low power frequency comb generation, high precision sensing, laser stabilization and sideband resolved optomechanics.
1609.08699.pdf
Yu, Mengjie, Yoshitomo Okawachi, Austin G Griffith, Nathalie Picqué, Michal Lipson, and Alexander L Gaeta. “Silicon-chip-based mid-infrared dual-comb spectroscopy.” arXiv:1610.01121 (2016). Publisher's Version Abstract
On-chip spectroscopy that could realize real-time fingerprinting with label-free and high-throughput detection of trace molecules is one of the 'holy grails" of sensing. Such miniaturized spectrometers would greatly enable applications in chemistry, bio-medicine, material science or space instrumentation, such as hyperspectral microscopy of live cells or pharmaceutical quality control. Dual-comb spectroscopy (DCS), a recent technique of Fourier transform spectroscopy without moving parts, is particularly promising since it measures high-precision spectra in the gas phase using only a single detector. Here, we present a microresonator-based platform designed for mid-infrared (mid-IR) DCS. A single continuous-wave (CW) low-power pump source generates two mutually coherent mode-locked frequency combs spanning from 2.6 μm to 4.1 μm in two silicon micro-resonators. Thermal control and free-carrier injection control modelocking of each comb and tune the dual-comb parameters. The large line spacing of the combs (127 GHz) and its precise tuning over tens of MHz, unique features of chip-scale comb generators, are exploited for a proof-of-principle experiment of vibrational absorption DCS in the liquid phase, with spectra of acetone spanning from 2870 nm to 3170 nm at 127-GHz (4.2-cm−1) resolution. We take a significant step towards a broadband, mid-IR spectroscopy instrument on a chip. With further system development, our concept holds promise for real-time and time-resolved spectral acquisition on the nanosecond time scale.
yu_midir_dual_comb_arxiv.pdf
Dutt, Avik, Steven Miller, Kevin Luke, Jaime Cardenas, Alexander L. Gaeta, Paulo Nussenzveig, and Michal Lipson. “Tunable Squeezing Using Coupled Ring Resonators on a Silicon Nitride Chip.” Opt. Lett. 41 (2016): 223. Publisher's Version Abstract
We demonstrate continuous tuning of the squeezing-level generated in a double-ring optical parametric oscillator by externally controlling the coupling condition using electrically controlled integrated microheaters. We accomplish this by utilizing the avoided crossing exhibited by a pair of coupled silicon nitride microring resonators. We directly detect a change in the squeezing level from 0.5 dB in the undercoupled regime to 2 dB in the overcoupled regime, which corresponds to a change in the generated on-chip squeezing factor from 0.9 to 3.9 dB. Such wide tunability in the squeezing level can be harnessed for on-chip quantum-enhanced sensing protocols that require an optimal degree of squeezing.
dutt_tunable_squeezing_ol_2015.pdf
2015
Okawachi, Yoshitomo, Mengjie Yu, Kevin Luke, Daniel O. Carvalho, Sven Ramelow, Alessandro Farsi, Michal Lipson, and Alexander L. Gaeta. “Dual-pumped degenerate Kerr oscillator in a silicon nitride microresonator.” Opt. Lett. 40 (2015): 5267–5270. Publisher's Version Abstract
We demonstrate a degenerate parametric oscillator in a silicon nitride microresonator. We use two frequency-detuned pump waves to perform parametric four-wave mixing and operate in the normal group-velocity dispersion regime to produce signal and idler fields that are frequency degenerate. Our theoretical modeling shows that this regime enables generation of bimodal phase states, analogous to the chi(2)-based degenerate OPO. Our system offers potential for realization of CMOS-chip-based coherent optical computing and an all-optical quantum random number generator.
okawachi_dual_pumped_kerr.pdf
Johnson, Adrea R., Aline S. Mayer, Alexander Klenner, Kevin Luke, Erin S. Lamb, Michael R. E. Lamont, Chaitanya Joshi, et al.. “Octave-spanning coherent supercontinuum generation in a silicon nitride waveguide.” Opt. Lett. 40 (2015): 5117–5120. Publisher's Version Abstract
We demonstrate the generation of a supercontinuum spanning more than 1.4 octaves in a silicon nitride waveguide using sub-100-fs pulses at 1µm generated by either a 53-MHz, diode-pumped ytterbium (Yb) fiber laser or a 1-GHz, Yb:CaAlGdO4 (Yb:CALGO) laser. Our numerical simulations show that the broadband supercontinuum is fully coherent, and a spectral interference measurement is used to verify that the supercontinuum generated with the Yb:CALGO laser possesses a high degree of coherence over the majority of its spectral bandwidth. This coherent spectrum may be utilized for optical coherence tomography, spectroscopy, and frequency metrology.
johnson_supercontinuum_ol_2014.pdf
Mouradian, Sara L., Tim Schroeder, Carl B. Poitras, Luozhou Li, Jordan Goldstein, Edward H. Chen, Michael Walsh, et al.. “Scalable Integration of Long-Lived Quantum Memories into a Photonic Circuit.” Physical Review X 5 (2015). Abstract
We demonstrate a photonic circuit with integrated long-lived quantum memories. Precharacterized quantum nodes-diamond microwaveguides containing single, stable, negatively charged nitrogen-vacancy centers-are deterministically integrated into low-loss silicon nitride waveguides. These quantum nodes efficiently couple into the single-mode waveguides with >1 Mcps collected into the waveguide, have narrow single-scan linewidths below 400 MHz, and exhibit long electron spin coherence times up to 120 mu s. Our system facilitates the assembly of multiple quantum nodes with preselected properties into a photonic integrated circuit with near unity yield, paving the way towards the scalable fabrication of quantum information processors.
Griffith, Austin G., Ryan K. W. Lau, Jaime Cardenas, Yoshitomo Okawachi, Aseema Mohanty, Romy Fain, Yoon Ho Daniel Lee, et al.. “Silicon-chip mid-infrared frequency comb generation.” Nature Communications 6 (2015). Abstract
Optical frequency combs are a revolutionary light source for high-precision spectroscopy because of their narrow linewidths and precise frequency spacing. Generation of such combs in the mid-infrared spectral region (2-20 mm) is important for molecular gas detection owing to the presence of a large number of absorption lines in this wavelength regime. Microresonator-based frequency comb sources can provide a compact and robust platform for comb generation that can operate with relatively low optical powers. However, material and dispersion engineering limitations have prevented the realization of an on-chip integrated mid-infrared microresonator comb source. Here we demonstrate a complementary metal-oxide-semiconductor compatible platform for on-chip comb generation using silicon microresonators, and realize a broadband frequency comb spanning from 2.1 to 3.5 mm. This platform is compact and robust and offers the potential to be versatile for use outside the laboratory environment for applications such as real-time monitoring of atmospheric gas conditions.
Zhang, Mian, Shreyas Shah, Jaime Cardenas, and Michal Lipson. “Synchronization and Phase Noise Reduction in Micromechanical Oscillator Arrays Coupled through Light.” Physical Review Letters, 2015. Abstract
Synchronization of many coupled oscillators is widely found in nature and has the potential to revolutionize timing technologies. Here, we demonstrate synchronization in arrays of silicon nitride micromechanical oscillators coupled in an all-to-all configuration purely through an optical radiation field. We show that the phase noise of the synchronized oscillators can be improved by almost 10 dB below the phase noise limit for each individual oscillator. These results open a practical route towards synchronized oscillator networks.
Fridman, Moti, Yoshitomo Okawachi, Stephane Clemmen, Michael Menard, Michal Lipson, and Alexander L. Gaeta. “Waveguide-based single-shot temporal cross-correlator.” Journal of Optics 17 (2015). Abstract
We describe a novel technique for performing a single-shot optical cross-correlation in nanowaveguides. Our scheme is based on four-wave mixing (FWM) between two orthogonally polarized input signals propagating with different velocities due to polarization mode dispersion. The cross-correlation is determined by measuring the spectrum of the idler wave generated by the FWM process.
Guha, Biswajeet, and Michal Lipson. “Controlling thermo-optic response in microresonators using bimaterial cantilevers.” Optics Letters 40 (2015): 103-106. Abstract
We demonstrate a novel platform to control the thermo-optic sensitivity in nanophotonic devices by evanescent coupling of light with bimaterial cantilevers. The cantilever can be designed to provide a negative thermal feedback to passively compensate for the positive thermo-optic effect in the waveguide core. We demonstrate athermal operation over 14 deg in cantilever coupled Silicon ring resonators, limited only by fabrication tolerances. We also show how the same platform can provide positive thermal feedback and overcome the material thermo-optic limit for increasing sensitivity of resonant detectors and thermal imagers.
PDF
Graphene electro-optic modulator with 30 GHz bandwidth
Phare, Christopher T., Yoon-Ho Daniel Lee, Jaime Cardenas, and Michal Lipson. “Graphene electro-optic modulator with 30 GHz bandwidth.” Nature Photonics 9 (2015): 511. Abstract
Graphene has generated exceptional interest as an optoelectronic material(1,2) because its high carrier mobility(3,4) and broadband absorption(5) promise to make extremely fast and broadband electro-optic devices possible(6-9). Electro-optic graphene modulators previously reported, however, have been limited in bandwidth to a few gigahertz(10-15) because of the large capacitance required to achieve reasonable voltage swings. Here, we demonstrate a graphene electro-optic modulator based on resonator loss modulation at critical coupling(16) that shows drastically increased speed and efficiency. Our device operates with a 30 GHz bandwidth and with a state-of-the-art modulation efficiency of 15 dB per 10 V. We also show the first high-speed large-signal operation in a graphene modulator, paving the way for fast digital communications using this platform. The modulator uniquely uses silicon nitride waveguides, an otherwise completely passive material platform, with promising applications for ultra-low-loss broadband structures and nonlinear optics.
PDF

Pages